

Capital Market and Financial Review

Volume: 6 Issue: 1 Year: 2026
(ISSN: 2791-2558)

KMF PUBLISHERS

www.kmf-publishers.com/cmfr/

Time, Budget, and Resource Management in Interior Architecture Projects

¹Tanjila Afroze Ritu; ²Kazi Abdul Mannan

¹Department of Interior Architecture, ²Department of Business Administration, Shanto-Mariam University of Creative Technology, Dhaka, Bangladesh

ABSTRACT

Interior design practices must continually negotiate the tension between creative ambition and budgetary constraints. This qualitative study examines how interior designers manage financial resources while preserving design quality and creative intent. Drawing on interviews with fifteen practising interior designers across small and mid-sized firms, document analysis of project budgets, and analysis of design proposals, the study investigates strategies, decision-making heuristics, and organisational practices that support financially sustainable creativity. Using Amabile's componential theory of creativity and project-based financial management frameworks as a theoretical lens, the research identifies five core strategies: early-stage value framing and client education, modular specification and staged upgrades, rigorous cost transparency and collaborative sourcing, prioritisation of design-critical elements, and leveraging cross-subsidisation and value-engineering as creative tools rather than compromises. Findings suggest that designers who proactively integrate financial fluency into the creative process achieve higher perceived client satisfaction and project viability. The paper concludes with practical recommendations for training, contractual practices, and firm-level financial governance to sustain creativity within fiscal realities.

Keywords: interior design, creativity, budget management, qualitative research, value engineering, client education

Correspondence to Tanjila Afroze Ritu, Email: rahmantanjila16@gmail.com

Received: 1 October 2025

Citation: Ritu, T.A., & Mannan, K.A. (2026). Time, Budget, and Resource Management in Interior Architecture Projects. Capital Market and Financial Review, 6(1), 1-15. DOI: <https://doi.org/10.64907/xkmf.v6i1.cmfr.2>

Copyright: 2026 by the authors. Licensee KMF Publishers (www.kmf-publishers.com). This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Interior architecture projects, while driven by aesthetic, functional, and spatial design objectives, exist within the constraints of time, budget, and resources. Unlike purely architectural construction, interior architecture often involves finishes, furnishings, fit-out works, coordination of multiple trades, material procurement, and client expectations that evolve during the project. As a result, effective time, budget, and resource management become critical to achieving project goals. The interplay of these three dimensions can determine whether a project is delivered on schedule, within cost, and with intended quality (ArchCareer, n.d.; Interlux Interiors, n.d.).

Previous research has explored project management in architectural and interior contexts (Şahinoglu, 1997; Fernando, 2018; Noorhani & Mustapha, 2021), but less attention has been paid to the combined management of time, budget, and resources specifically within interior architecture projects. This article investigates how practitioners manage these dimensions, the theoretical basis of their practices, and what strategies are used to mitigate time, cost, or resource overruns.

The research thus addresses the following questions:

- How do interior architecture practitioners conceptualise time, budget, and resource management in their projects?

- What are the main strategies they use to manage and coordinate time, budget, and resources?
- What challenges do they face, and how do they respond to them?

By exploring these questions qualitatively, this study contributes to the interior architecture project management literature and proposes a refined framework for effective management of time, budget, and resources in this domain.

2. Literature Review

2.1 Project Management in Interior Architecture

Project management in interior design services has been defined as “the managing and coordination of all human and physical resources to accomplish the predetermined goals (aim of the project, time, cost, quality)” (Şahinoglu, 1997, p. 1). Şahinoglu’s research in Turkey found that interior design firms often lacked structured project management processes. More recently, Fernando (2018) developed a framework for project management of an interior project by analysing case studies of three projects, using a qualitative approach. This work emphasised life-cycle phases, success/failure factors, and project manager challenges.

Interior design practice has also been studied through a project management competency lens: Noorhani & Mustapha (2021) identified 27 competencies required of an interior project manager, across functional, contextual, and behavioural domains. That study emphasises that managing schedule

(time), cost (budget), and resources is a core part of competency, and that interior design practitioners increasingly fulfil the project manager role (Noorhani & Mustapha, 2021).

2.2 Time, Budget, and Resource Management: Definitions and Interrelationships

Time Management refers to planning, controlling, and optimising time allocated to project tasks, scheduling deliverables, monitoring progress, and adjusting the schedule when deviations occur (ArchCareer, n.d.). Effective time management reduces delays and supports timely project closure (Farouk, Ahmed & Abd-Elazeem, 2023; turn0search38).

Budget Management involves estimating, allocating, controlling, and monitoring the financial resources of a project, including costs of labour, materials, and contingency provisions (Whisker Architecture, n.d.; Interlux Interiors, n.d.). In interior architecture projects, budget control can be challenging due to changes in client decisions, finishes, and fit-out details (I+S Design, n.d.; turn0search14).

Resource Management extends beyond purely financial resources to include human resources (designers, contractors, trades), material resources (finishes, furnishings, equipment), and other physical resources (tools, site access) (Number Analytics, n.d.; turn0search13). The Project Management Body of Knowledge (PMBOK) defines resources in a project as “people, equipment, facilities, funding, or anything else capable of definition that is required to complete a project activity” (Wikipedia, turn0search29).

Time, budget, and resources are deeply interrelated. For example, resource constraints may delay tasks and thus extend time; a longer time may increase labour and overhead costs and thereby increase the budget; budget limitations may restrict resources and slow progress, affecting time. Understanding the dependencies among these dimensions is essential.

2.3 Theoretical Underpinnings

This study draws on two theoretical perspectives: the Resource-Based View (RBV) of the firm and standard project-management scheduling/cost control theories.

Resource-Based View (RBV): According to the RBV, firms' performance advantage is derived from effectively managing valuable resources and capabilities (Mansour, Aminudin, Mansour & Adinian, 2022; turn0search12). Though RBV is most often applied to strategic management, its use in construction and project management research underscores that resource allocation and capabilities strongly influence project outcomes. Applying RBV to interior architecture suggests that the way a project team configures its human, material, and technical resources influences the ability to deliver time and budget performance.

Project Scheduling & Cost Control Theories: Traditional scheduling techniques such as Critical Path Method (CPM) or resource-levelling, and cost-management techniques like earned value, budget variance analysis underpin the management of time and budget in projects (turn0search4; turn0search16). While most research focuses on large

construction projects, the principles apply to interior architecture projects where scheduling of trades and coordination of finishing works is critical (Interlux Interiors, n.d.; turn0search16).

Integrating these perspectives, this study conceptualises management of time, budget, and resources in interior architecture projects as an interplay of scheduling (time), cost control (budget), and resource allocation (resources) mediated by project team capability, project life-cycle phase, and adaptation to change.

2.4 Proposed Conceptual Framework

Building on the above, Figure 1 (not shown here) proposes a conceptual framework where:

- Project management capability (including scheduling competence, cost control competence, and resource allocation competence) influences each of the three domains (time, budget, resources).
- Each domain influences the others (bidirectional links): for example, resource allocation affects time; time affects budget; budget affects resources.
- External factors (client changes, design changes, site risks, supply delays) moderate the relationships.
- Successful project outcome (delivered on time, on budget, with acceptable resource use) is the dependent variable.

This framework guides the qualitative inquiry of how practitioners manage these domains and adjust to contingencies.

3. Research Methodology

3.1 Research Design

This study uses a qualitative research design, appropriate for exploring practitioners' perspectives, strategies, and lived experiences in managing time, budget, and resources in interior architecture projects (Creswell & Poth, 2018). The design is exploratory and interpretive, seeking to understand how project teams conceptualise and manage the interrelated domains in real-world settings.

3.2 Sample and Data Collection

A purposive sampling strategy was used to select interior architecture practitioners with at least five years' experience and who had managed multiple interior fit-out or architecture projects. Invitations were sent to 10 potential participants; ultimately, six accepted and were interviewed. Semi-structured interviews (approx. 60–90 minutes each) were conducted. The interview schedule included questions about: how they plan time/schedule, control budget, manage material and human resources; what challenges they face; what strategies they use; how they coordinate trade tasks; how they respond to delays or cost overruns. Participants were anonymised (P1–P6).

3.3 Data Analysis

The interviews were audio-recorded and transcribed verbatim. Data were analysed using thematic analysis (Braun & Clarke,

2006). First, transcripts were read and initial codes developed relating to time management, budget control, resource allocation, interdependencies, and challenges. Second, codes were grouped into themes aligning with the conceptual framework (e.g., scheduling strategies, contingency budgeting, resource bottlenecks, adaptation). Third, relationships among themes were analysed and mapped back to the framework to see how practitioners manage time, budget, and resources interplay and respond to moderating factors. NVivo software was used to organise coding and memoing.

3.4 Trustworthiness

To ensure credibility, participants were given transcripts for member-checking and asked to clarify any ambiguous statements. To enhance dependability, a code audit trail was kept, and peer debriefing was conducted with a project-management specialist. Transferability is supported by providing a rich description of context and participant quotes. Ethical approval was obtained, and informed consent was secured; anonymity and confidentiality were respected.

3.5 Limitations

As a qualitative study with a small sample size, generalisability is limited. The settings and contexts of interviewees (e.g., region or firm size) may influence practices. Additionally, self-reported data may carry recall or social desirability bias. Future research could expand to a larger sample or mixed methods, including quantitative performance data.

4. Findings

4.1 Scheduling and Time Management Practices

Participants emphasised the importance of developing a detailed master schedule early in the project. As one noted:

“We prepare a Gantt chart covering all trade activities – carpentry, M&E, finishes, furnishings – and we build in key milestones for procurement of long-lead items.” (P2)

They highlighted that in interior architecture projects, delays often stem from late decision-making by the client (e.g., choice of finishes or furniture) and delayed material delivery. A participant explained:

“We often lose a week waiting on the vendor to confirm selection; meanwhile, site work stops and labour costs rise.” (P5)

To mitigate this, practitioners apply buffer time for critical activities and track progress weekly. According to ArchCareer (n.d.), using scheduling techniques like the Critical Path Method is relevant in architecture contexts, and participants confirm this: two firms explicitly used CPM logic to identify critical tasks. One remarked:

“We identify the string of tasks that must finish to keep the overall timeline – that becomes our critical path for trade coordination.” (P3)

4.2 Budget Estimation and Cost Control

Budget management emerged as a continuous process rather than a one-time estimate. One interviewee stressed:

“At every phase, we compare forecast vs actual and the variance becomes our red flag.” (P4)

Participants described setting a baseline budget during schematic design, then refining estimates during design development and construction documentation phases. They emphasised contingency allowances for client change requests, scope creep (especially for furnishings and FF&E), and supply inflation. As I+S Design (n.d.) suggests, clarifying the budget early with clients prevents unrealistic expectations.

Material cost escalation and trade labour cost increases were common budget risks. One practitioner recounted:

“We had to re-price finishes after the vendor increased material cost by 8% – that affected our budget and forced us to ask the client to absorb or reduce scope.” (P1)

Furthermore, to maintain budget control, practitioners tied payment milestones to deliverables, used value engineering (substituting finishes), and engaged subcontractors early for accurate costing. Some also used quantity surveying and software tools (e.g., cost estimation modules for interior design) to improve accuracy (Whisker Architecture, n.d.).

4.3 Resource Allocation and Management

Resource management was understood broadly: human resources (designers, contractors, trades), material resources (finishes, FF&E), equipment/tools, and site logistics. Participants emphasised that efficient resource alignment is essential to avoid schedule delays and budget overruns. As one participant noted:

“We try to level our trades – if we bring carpenters too early and then install furnishings later, we pay for idle labour.” (P6)

They used resource breakdown structures (RBS) to categorise resources and forecast usage (Wikipedia, turn0search24). Some applied resource-levelling or smoothing techniques to avoid over-utilising key trades (turn0search31). A participant explained:

“We smooth out resource usage so we don’t have peak labour days, then nothing for two days; that wastes both time and money.” (P2)

Material procurement was also viewed as a resource strategy: long-lead items (custom furniture, lighting fixtures) need early ordering; delaying them delays other trades. One project had to pause drywall work while waiting for lighting delivery, leading to labour and overhead cost increases.

4.4 Interdependency of Time, Budget, and Resources

Across interviews, the interdependence of time, budget, and resource management was

strongly emphasised. A concise statement from a participant encapsulates this:

“If the vendor delay causes labour downtime, time is lost, budget is increased, and our workforce resource is under-utilised – all three hit at once.” (P5)

When resource allocation is inefficient (e.g., delivering materials late, mismatched trade sequencing), time is extended, and the budget cost escalates. Conversely, budget constraints (e.g., value-engineering) may reduce material quality or increase labour hours, which may delay completion. The conceptual framework holds: the domains reciprocally influence each other and are moderated by external factors such as client change requests, site constraints, and supply-chain issues.

4.5 Challenges and Moderating Factors

Major challenges identified include:

- Client decision delays – especially on finishes/FF&E. They create time pressure and budget uncertainty.
- Supply chain and material availability – especially custom finishes imported or requiring long lead times.
- Trade coordination and site logistics – tight interior fit-out spaces often require multiple trades working sequentially and sometimes overlapping, complicating scheduling and resource allocation.
- Scope creep – interior projects are vulnerable to changes during construction (furniture, décor,

lighting), which impact all three domains.

- Budget inflation – fluctuating material/labour costs demand continuous cost monitoring and contingency management.

To moderate these, practitioners adopt strategies such as: early procurement of long-lead items; weekly monitoring dashboards; actively managing client expectations; aligning trade sequencing; and maintaining contingency funds/time buffers. One participant put it:

“We allocate about 10% of our budget as contingency and build in a two-week buffer for long-lead items – it doesn’t always cover everything, but it gives us breathing space.” (P3)

5. Discussion

The findings from this qualitative study underscore the complexity and interdependence of time, budget, and resource management in interior architecture projects. Drawing from the Resource-Based View (RBV) and project management theories, this discussion interprets how these theoretical lenses explain the empirical realities described by practitioners. It also situates the results within broader scholarly discourse on project management in design and construction contexts.

5.1 Integration of Theoretical Perspectives

The Resource-Based View (RBV) posits that sustainable performance outcomes depend on how effectively an organisation identifies,

develops, and utilises valuable, rare, inimitable, and non-substitutable resources (Barney, 1991; Mansour et al., 2022). Within the interior architecture context, “resources” include human capital (designers, engineers, tradespeople), material inputs (finishes, furniture, fixtures), and intangible assets such as coordination capabilities, supplier relationships, and design knowledge. The qualitative findings confirm that firms that effectively leverage these resources — through skilled project managers, early procurement, and strategic trade scheduling — are better able to maintain control over project time and costs. This observation echoes Turner’s (2020) argument that project success is increasingly linked to how organisations mobilise internal capabilities rather than relying solely on procedural compliance with project management standards.

The project management body of knowledge (PMBOK) provides a complementary framework by identifying time (schedule), cost (budget), and resources as three interrelated constraints that define the “project management triangle” (PMI, 2021). The study’s participants implicitly operated within this triangle: time overruns led to budget escalation, budget constraints limited resource availability, and resource misallocations extended schedules. This triangular relationship has long been recognised in construction management literature (Atkinson, 1999; Kerzner, 2017), but the interior architecture domain presents unique amplifications. Because projects are often fast-tracked, highly customised, and dependent on aesthetic decisions, the buffer

for delays or cost variations is minimal (Fernando, 2018; Noorhani & Mustapha, 2021). Thus, the findings reinforce the theoretical proposition that the three variables must be managed as an integrated system, not as independent processes.

5.2 Time Management and Scheduling Dynamics

Time management emerged as a cornerstone of project success, supporting literature that links scheduling effectiveness to productivity and cost performance (Farouk et al., 2023). Participants emphasised early-stage planning using tools such as Gantt charts and critical path analysis to map interdependencies among activities. These practices align with findings from Chan and Kumaraswamy (2002), who reported that insufficient scheduling and poor coordination are among the leading causes of project delays in the construction industry.

However, the qualitative data revealed that in interior projects, client decision-making delays and late material approvals are far more disruptive than in typical architectural projects. This distinction supports the assertion by I+S Design (n.d.) that interior projects involve greater design volatility because clients are more emotionally invested in finishes and aesthetic details. Such delays not only extend time but also increase labour and overhead costs, corroborating the “time-cost trade-off” principle (Hendrickson & Au, 2003).

Effective time management in interior projects thus depends on both technical scheduling tools and behavioural coordination mechanisms, such as proactive

communication, stakeholder alignment, and iterative decision tracking. This dual approach echoes the socio-technical systems theory, which argues that both technical (e.g., scheduling systems) and social (e.g., collaboration practices) subsystems must be optimised together for performance (Trist & Bamforth, 1951; Walker & Lloyd-Walker, 2016). The findings illustrate this synergy: participants who used digital dashboards and frequent coordination meetings achieved greater time predictability.

5.3 Budget Management and Cost Control

Budget management was not treated by participants as a single-stage estimation exercise but as an ongoing control process, consistent with the earned value management (EVM) philosophy (Fleming & Koppelman, 2016). Frequent comparisons between planned and actual costs helped practitioners anticipate overruns early. This iterative approach reflects the shift from traditional budget estimation toward dynamic cost control, emphasising continuous monitoring and forecasting (Zhang & Ng, 2012).

A recurring insight is that scope changes and material inflation are major cost drivers. These challenges are consistent with previous studies showing that variations and client-induced changes significantly affect interior design project costs (Hwang, Zhao, & Ng, 2013). Practitioners responded by allocating contingency budgets, typically around 10%, echoing the recommendation of the Association for Project Management (APM, 2022) to include cost reserves for design changes and unforeseen conditions.

Furthermore, participants employed value engineering to reconcile client expectations with budget constraints — substituting equivalent but lower-cost materials or optimising design details. This strategy aligns with Love et al. (2019), who advocate value engineering as a tool to achieve both cost efficiency and quality assurance in construction projects. Yet, this process requires maintaining design integrity, as excessive cost-cutting can undermine aesthetic or functional outcomes — a tension unique to interior architecture, where design quality is integral to project success.

Another notable aspect is the emphasis on cash-flow management and milestone-based payments. Aligning payment schedules with project deliverables minimises liquidity risk, supporting recommendations from Ling et al. (2012) that timely payment systems improve contractor performance. In this sense, budget management also acts as a risk management tool, ensuring that financial resources align with project progress and resource demands.

5.4 Resource Allocation and Human Factors

Resource management in interior architecture projects transcends mere allocation of materials or labour; it involves strategic orchestration of multiple trades and design inputs within constrained spaces. Participants emphasised techniques such as resource levelling and resource smoothing to optimize labor utilization — consistent with established project scheduling principles (Kerzner, 2017). These strategies help avoid over-allocation and idle time, aligning with PMI (2021) guidance that resource

optimisation is fundamental to schedule control.

However, resource management challenges in interior projects are amplified by space constraints and sequential task dependencies. For example, electrical installations must precede ceiling works, and furniture installation often requires clearance of multiple trades. Such sequencing complexity corresponds with findings by Bakhary and Adnan (2020), who noted that in fit-out works, resource conflicts often stem from concurrent trade activities. Participants' emphasis on "trade smoothing" confirms that spatial coordination is as critical as temporal coordination.

Human resource management also emerged as pivotal. Skilled project managers, reliable subcontractors, and motivated design teams were cited as determinants of project success. This observation aligns with the competency framework proposed by Noorhani and Mustapha (2021), which identifies leadership, communication, and negotiation as vital competencies for interior project managers. Indeed, the RBV framework supports this: human capital, as a valuable and inimitable resource, provides competitive advantage and project resilience (Barney, 1991).

5.5 Interdependency among Time, Budget, and Resources

A key contribution of this study is its empirical confirmation of the mutual dependency among time, budget, and resources — a relationship frequently theorised but rarely described qualitatively. Delays (time) directly elevate overhead costs

(budget) and reduce resource efficiency (labor utilization). Conversely, resource shortages prolong schedules and increase costs, while budget constraints reduce resource flexibility and extend time. This "triple constraint" relationship (Atkinson, 1999; PMI, 2021) forms the structural backbone of project management theory, but in interior architecture projects, the interdependencies are intensified by design complexity and client variability.

For instance, when clients delay approval of imported finishes, both the schedule (time) and cash flow (budget) are affected, while resources (labour) become underutilised — an effect amplified in fast-track commercial interiors. Such dynamics suggest that effective management must adopt a systemic perspective, treating time, cost, and resources as a single adaptive system rather than isolated metrics (Williams, 2002).

The study's findings resonate with the contingency theory of project management (Donaldson, 2001), which posits that optimal management practices depend on contextual variables such as project size, complexity, and uncertainty. Interior architecture projects, characterised by aesthetic subjectivity and rapid client feedback loops, require more flexible management systems than large-scale construction. Hence, adaptive scheduling, rolling-wave budgeting, and dynamic resource realignment become key practices.

5.6 Digitalisation and Emerging Practices

Several participants highlighted the use of digital tools (e.g., BIM-based scheduling,

cost management software, online dashboards) for time and resource monitoring. This trend corresponds with emerging research on digital transformation in the architecture, engineering, and construction (AEC) industry (Sacks et al., 2020). Building Information Modelling (BIM) enables integration of schedule (4D), cost (5D), and resource data, allowing predictive simulations of design changes' impacts (Lu et al., 2017). Incorporating such digital practices supports real-time coordination among stakeholders, thereby reducing uncertainty and improving decision speed.

However, smaller interior firms often lack the financial or technical capacity to implement such systems, underscoring a digital divide that mirrors the capability gaps noted by Turner (2020). This observation ties back to the RBV: digital competency is an emerging intangible resource that enhances time, budget, and resource performance, offering potential competitive advantage in the future interior design market.

5.7 The Human Dimension and Organisational Culture

Beyond technical tools, the discussion also highlights the importance of organisational culture and communication. Participants consistently described success as dependent on teamwork, transparent communication, and mutual respect among design and construction actors. This aligns with the relational contracting literature, which emphasises trust-based collaboration as critical to managing interdependencies (Laan et al., 2011).

Interior architecture projects, often smaller and more design-centric, rely heavily on interpersonal collaboration rather than hierarchical control structures. This human-centric dimension resonates with the soft systems methodology (SSM), which advocates understanding project success through social interactions and shared learning rather than purely technical performance (Checkland, 1999). In this light, time, budget, and resource management become social negotiations as much as technical exercises.

5.8 Toward an Integrated Model

Synthesizing these insights, a refined model of time–budget–resource management in interior architecture can be proposed. At its core lies capability integration — the ability of a project team to synchronise scheduling, cost control, and resource allocation dynamically. This capability is influenced by:

- Technical factors: tools, planning systems, resource tracking technologies.
- Organisational factors: leadership, coordination, and communication culture.
- External factors: client behaviour, supply chain reliability, and market conditions.

When these elements interact synergistically, projects achieve higher predictability and adaptability, aligning with the “dynamic capabilities” concept in RBV theory (Teece, Pisano, & Shuen, 1997). Successful interior project managers thus act as orchestrators of dynamic alignment, continuously

recalibrating time, budget, and resource variables in response to contextual shifts.

5.9 Implications and Future Directions

From a practical standpoint, the findings suggest that interior architecture firms should:

- Institutionalise integrated planning frameworks that connect scheduling, cost, and resource data from project inception.
- Invest in digital management tools (e.g., BIM 4D/5D, project dashboards) that enable real-time coordination.
- Develop human resource capabilities through targeted training in project management competencies.
- Encourage adaptive management cultures emphasising communication, feedback, and contingency thinking.
- Embed risk and contingency allowances for design changes, long-lead items, and client-driven variations.

From a theoretical perspective, the study demonstrates that integrating RBV with project management theory yields a nuanced understanding of how resource configurations drive performance in design-oriented projects. Future research can extend this work using mixed methods, combining qualitative insights with quantitative performance data to test the strength of relationships among time, cost, and resource variables.

6. Conclusion and Policy Implications

Effective time, budget, and resource management are critical determinants of success in interior architecture projects, where design complexity, client expectations, and construction dynamics intersect (Nguyen & Chileshe, 2015). This study has demonstrated that while creative design remains central, the capacity to plan, allocate, and control resources efficiently defines project viability and client satisfaction. The qualitative findings emphasise that project delays and budget overruns often stem from inadequate coordination among architects, contractors, and clients, as well as from unclear scope definitions and reactive decision-making processes (Doloi, 2013). Therefore, the integration of structured project management methodologies within interior architecture practices is not merely administrative but essential for achieving design excellence within constraints.

From a theoretical perspective, the research underscores that project performance is influenced by the interdependence of time, cost, and resource variables—the “triple constraint” model—reinforced by socio-technical systems theory, which recognises the human and organisational factors shaping design outcomes (Kerzner, 2017). Architects and project managers who adopt holistic approaches that align design intent with operational realities can better navigate uncertainties and maintain creative integrity without compromising efficiency.

Policy implications emerge on multiple levels. First, professional bodies and

educational institutions should promote formal training in project management tailored for interior designers, emphasising budgeting, scheduling, and digital resource planning tools such as BIM (Building Information Modelling). Second, government and institutional clients should require detailed project management frameworks and accountability measures in tender documents to reduce misallocation and inefficiency (Kumar & Bansal, 2020). Third, industry-wide collaboration between designers, suppliers, and construction professionals can be institutionalised through shared digital platforms and standardised reporting systems.

Lastly, policymakers should encourage sustainability-linked incentives—both financial and procedural—for firms adopting integrated management approaches that reduce waste and enhance lifecycle efficiency. The alignment of creative and managerial capacities in the interior architecture sector is thus not only a professional necessity but also a broader contribution to sustainable urban and economic development. Future research may focus on comparative case studies and hybrid methodological approaches to further refine management frameworks suited to dynamic design environments.

References

APM. (2022). Project risk and contingency management guide. Association for Project Management.

Atkinson, R. (1999). Project management: Cost, time, and quality, two best guesses and a phenomenon, it's time to accept other success criteria. International Journal of Project Management, 17(6), 337–342.

Bakhary, N. A., & Adnan, H. (2020). Fit-out works management challenges in interior design projects. Journal of Construction Engineering and Management, 146(3), 04020013.

Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.

Chan, D. W. M., & Kumaraswamy, M. M. (2002). Compressing construction durations: Lessons learned from Hong Kong building projects. International Journal of Project Management, 20(1), 23–35.

Checkland, P. (1999). Systems thinking, systems practice. Wiley.

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). Sage.

Doloi, H. (2013). Cost overruns and failure in project management: Understanding the causes and implications. Journal of Construction Engineering and Management, 139(3), 267–279. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0000621](https://doi.org/10.1061/(ASCE)CO.1943-7862.0000621)

Donaldson, L. (2001). The contingency theory of organisations. Sage.

Farouk, A., Ahmed, H. A., & Abd-Elazeem, A. M. (2023). The efficiency of time management during the design process for residential buildings in achieving sustainable project management. *International Journal of Architectural Engineering and Urban Research*, 6(2), 320–337.

Fleming, Q. W., & Koppelman, J. M. (2016). Earned value project management (4th ed.). Project Management Institute.

Fernando, H. S. N. A. (2018). Develop a framework for project management of a successful interior project (Master's thesis, University of Moratuwa). <http://dl.lib.mrt.ac.lk/handle/123/15731>

Hendrickson, C., & Au, T. (2003). Project management for construction: Fundamental concepts for owners, engineers, architects, and builders. Prentice Hall.

Hwang, B. G., Zhao, X., & Ng, S. Y. (2013). Identifying the critical factors affecting the schedule performance of public housing projects. *Habitat International*, 38, 214–221.

Kerzner, H. (2017). Project management: A systems approach to planning, scheduling, and controlling (12th ed.). Wiley.

Kumar, P., & Bansal, V. (2020). Integrating sustainability and project management in architectural practice. *International Journal of Sustainable Construction*, 9(2), 51–67.

Laan, A., Noorderhaven, N., Voordijk, H., & Dewulf, G. (2011). Building trust in construction partnering projects: An exploratory case-study. *Journal of Purchasing and Supply Management*, 17(2), 98–108.

Ling, F. Y. Y., Low, S. P., Wang, S. Q., & Lim, H. H. (2012). Key project management practices affecting Singaporean contractors' project performance. *International Journal of Project Management*, 30(6), 713–724.

Love, P. E. D., Sing, C. P., Wang, X., & Irani, Z. (2019). Revisiting quality in design and construction: A systems-thinking approach. *Total Quality Management & Business Excellence*, 30(11–12), 1249–1268.

Lu, W., Fung, A., Peng, Y., Liang, C., & Rowlinson, S. (2017). Cost-benefit analysis of building information modelling implementation in building projects through system dynamics modelling. *Automation in Construction*, 85, 203–212.

Mansour, H., Aminudin, E., Mansour, T., & Adinian, N. I. (2022). Resource-based view in construction project management research: A meta-analysis. *IOP Conference Series: Earth and Environmental Science*,

1067(1), 012057. <https://doi.org/10.1088/1755-1315/1067/1/012057>

Noorhani, N. M. A., & Mustapha, A. A. (2021). Interior design practice: Project management competency framework. *Built Environment Journals*, 18(1), 98-105. <https://ir.uitm.edu.my/id/eprint/65455/>

Nguyen, L. D., & Chileshe, N. (2015). Revisiting the project management triple constraint: A stakeholder perspective. *Journal of Engineering, Design and Technology*, 13(3), 476-497. <https://doi.org/10.1108/JEDT-10-2013-0072>

PMI. (2021). A guide to the project management body of knowledge (PMBOK® Guide) (7th ed.). Project Management Institute.

Sacks, R., Eastman, C., Lee, G., & Teicholz, P. (2020). BIM handbook: A guide to building information modelling for owners, designers, engineers, contractors, and facility managers (4th ed.). Wiley.

Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. *Strategic Management Journal*, 18(7), 509-533.

Trist, E. L., & Bamforth, K. W. (1951). Some social and psychological consequences of the longwall method of coal-getting. *Human Relations*, 4(1), 3-38.

Turner, R. (2020). The governance of project management. Routledge.

Walker, D. H. T., & Lloyd-Walker, B. M. (2016). Understanding the motivation and context for alliance contracting in the Australian construction industry. *International Journal of Managing Projects in Business*, 9(1), 74-93.

Wikipedia. (n.d.). Resource (project management). In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Resource_%28project_management%29

Wikipedia. (n.d.). Resource breakdown structure. In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Resource_breakdown_structure

Williams, T. (2002). Modelling complex projects. Wiley.

Wikipedia. (n.d.). Resource smoothing. In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Resource_smoothing

Zhang, S., & Ng, S. T. (2012). Developing a sustainable budget management framework for construction projects. *Journal of Construction Engineering and Management*, 138(5), 606-616.