

International Research Journal of Business and Social Science

Volume: 12 Issue: 1
January-March, 2026
ISSN:2411-3646

DOI: <https://doi.org/10.64907/xkmf.v12i1.irjbss.8>

Research Article

<http://irjbss.net/>

OPEN ACCESS

Leadership and Collaboration in Multidisciplinary Architectural Projects

Md Sabbir Bin Mannan^{1*}; Kazi Abdul Mannan²

¹Department of Drawing & Painting

²Department of Business Administration

Shanto-Mariam University of Creative Technology, Uttara, Dhaka, Bangladesh

ABSTRACT

This study explores the critical dynamics of leadership and collaboration in multidisciplinary architectural projects, emphasising how integrative teamwork and shared decision-making influence project innovation and success. As architecture increasingly intersects with engineering, urban planning, environmental science, and digital technologies, leadership must evolve from hierarchical control toward transformative and participatory models that encourage creativity and interdisciplinary dialogue. Using a qualitative research methodology, this study synthesises insights from interviews, case analyses, and literature to identify effective leadership behaviours and collaborative mechanisms that sustain innovation and resolve conflicts. The theoretical framework integrates transformational leadership theory and collaborative governance models, providing an analytical lens for understanding leadership adaptability within complex project ecosystems. Findings reveal that shared vision, trust-building, and transparent communication are key drivers of performance, while poor integration often leads to project fragmentation and inefficiency. The research contributes to leadership studies in architecture by proposing a refined model of collaborative leadership, aligning creative autonomy with structured coordination. The study concludes that fostering leadership training, digital collaboration tools, and cross-disciplinary learning can significantly enhance teamwork effectiveness and architectural innovation in contemporary practice.

ARTICLE HISTORY

Received 1 November 2025

Revised 9 December 2025

Accepted 25 December 2025

KEYWORDS

leadership, collaboration, multidisciplinary architecture, teamwork, transformational leadership, qualitative research

CONTACT Md Sabbir Bin Mannan, Email: sabbir.bin.mannan@gmail.com

1. Introduction

Architecture as a discipline stands at the intersection of art, engineering, technology, and social science. Modern architectural projects are rarely the product of an individual; they emerge from collaborative efforts among professionals from diverse disciplines, including architects, civil and structural engineers, interior designers, environmental consultants, and project managers (Emmitt, 2010). The increasing scale and technical complexity of built environments necessitate coordinated integration of expertise, which requires both effective leadership and robust collaborative mechanisms (Sebastian, 2011).

Leadership in multidisciplinary architectural projects differs from conventional models of leadership in business or construction management. While traditional leadership often relies on authority and decision-making hierarchy, architectural design teams thrive on creativity, shared learning, and negotiation (Maher et al., 2018). Consequently, leadership in this context must balance creative freedom with practical constraints, ensuring that innovative ideas align with technical feasibility, cost, and sustainability goals (Cross, 2011).

Collaboration, on the other hand, is the operational expression of leadership. It involves managing relationships across professional boundaries, facilitating dialogue, and creating a shared understanding of project objectives (Dossick & Neff, 2010). Multidisciplinary collaboration demands open communication,

respect for disciplinary differences, and a commitment to collective learning (Sonnenwald, 2007). However, such collaboration is often challenged by conflicts arising from differing professional languages, priorities, and conceptual frameworks (Cuff, 1991).

This research seeks to examine how leadership influences collaboration in multidisciplinary architectural projects. The key objectives are:

- To identify leadership roles and styles that facilitate effective collaboration in architectural teams.
- To understand the dynamics of interdisciplinary collaboration in design processes.
- To develop a conceptual model integrating leadership and collaboration for successful project delivery.

The study is guided by the central research question:

How do leadership practices shape collaboration in multidisciplinary architectural projects?

2. Literature Review

2.1 Leadership in Architecture

Leadership in architectural practice has evolved from the traditional image of the “master architect” to that of a team facilitator or design integrator (Kirk & Sellen, 2014). Early architectural leadership was characterised by top-down control, where the architect directed other specialists (Koolhaas,

1995). However, contemporary architectural projects, with their reliance on digital technologies and cross-disciplinary input, demand a more participatory approach (Bachman, 2003).

Transformational leadership theory (Bass, 1999) is particularly relevant, emphasising vision, inspiration, and intellectual stimulation. Leaders in architectural teams motivate members to transcend individual interests and focus on collective goals (Northouse, 2022). Meanwhile, distributed leadership—where leadership functions are shared among multiple actors—has become essential in collaborative design environments (Spillane, 2006).

2.2 Collaboration and Teamwork in Multidisciplinary Contexts

Collaboration in architecture involves shared decision-making, co-creation, and inter-professional dialogue (Grey, 1989). Cross-disciplinary teams rely on integrating knowledge from multiple domains to solve complex spatial and technical problems (Kvan, 2000). The use of Building Information Modelling (BIM) and digital communication platforms has further transformed collaborative practices (Azhar, 2011).

Effective collaboration requires trust, communication, and mutual understanding (Mattessich & Monsey, 1992). Studies indicate that collaborative teams achieve higher levels of innovation and design quality when members are motivated by shared objectives and a sense of collective ownership (Sebastian, 2008).

2.3 Challenges in Multidisciplinary Collaboration

Barriers to effective collaboration include disciplinary silos, communication breakdowns, power asymmetries, and conflicting professional values (Cuff, 1991; Dossick & Neff, 2011). For instance, engineers may prioritise structural efficiency, while architects emphasise aesthetic coherence. Without integrative leadership, such differences can lead to design conflicts, delays, and cost overruns (Emmitt & Gorse, 2003).

2.4 Leadership–Collaboration Interface

The link between leadership and collaboration has been widely acknowledged in organisational behaviour literature but less systematically explored in architectural contexts (Mumford et al., 2002). Leadership fosters collaboration by creating psychological safety, encouraging open dialogue, and aligning diverse motivations toward a shared vision (Schein, 2010). Leaders act as boundary spanners—mediating between disciplines and managing the flow of information (Tushman & Scanlan, 1981).

3. Theoretical Framework

This study adopts an integrative theoretical framework combining three perspectives:

- Transformational Leadership Theory (Bass, 1999) – emphasising vision, motivation, and empowerment.
- Distributed Cognition Theory (Hutchins, 1995) – explaining how

knowledge is shared and constructed collectively in teams.

- Socio-Technical Systems Theory (Trist & Bamforth, 1951) – focusing on the interaction between human collaboration and technological tools (e.g., BIM, CAD).

Together, these theories explain how leadership behaviours influence cognitive collaboration processes and how technological and organisational contexts enable or constrain collective creativity. The model posits that transformational and distributed leadership styles foster a supportive environment where distributed cognition is facilitated through technological mediation. The socio-technical dimension underscores that collaboration is both a social process and a technical configuration.

This framework guided the design of the research questions, data collection, and analysis, providing an interpretive lens for understanding leadership–collaboration dynamics in architectural practice.

4. Research Methodology

4.1 Research Design

This research adopts a qualitative phenomenological design to explore the lived experiences of professionals engaged in multidisciplinary architectural projects. Qualitative methods are appropriate for investigating complex social interactions and meaning-making processes (Creswell & Poth, 2018).

4.2 Data Collection

Data were collected through semi-structured interviews with 20 participants drawn from leading multidisciplinary architectural firms in Europe, Asia, and the Middle East. Participants included architects, engineers, project managers, and sustainability consultants with a minimum of 10 years' experience.

Interviews lasted between 60 and 90 minutes and focused on participants' experiences of leadership, communication, and collaboration. Additional documents, such as project charters and design reports, were reviewed for contextual understanding.

4.3 Data Analysis

Data were transcribed and analysed using thematic analysis (Braun & Clarke, 2006). Coding was both inductive (emerging from data) and deductive (guided by the theoretical framework). NVivo software was used to manage data. Themes were developed through iterative comparison, focusing on leadership behaviours, collaboration enablers, and challenges.

4.4 Validity and Reliability

Triangulation was achieved by comparing interview data with secondary sources and reflective memos. Member checking was conducted by sharing summaries with participants for confirmation. Ethical approval was obtained from the institutional review board, and all participants provided informed consent.

5. Findings and Analysis

5.1 Leadership Roles and Styles

Three primary leadership roles emerged: visionary leaders, facilitative leaders, and integrative leaders. Visionary leaders set the conceptual direction of the project, often architects-in-charge articulating design intent. Facilitative leaders foster open communication and ensure equitable participation. Integrative leaders mediate between conflicting disciplines and align diverse inputs (Maher et al., 2018).

Participants emphasised that leadership effectiveness depended more on emotional intelligence and communication skills than on formal authority (Goleman, 1998). A project manager from London noted, “Leadership here is about listening—sometimes stepping back to let others lead in their domain.”

5.2 Trust and Communication

Trust was identified as a foundational element for collaboration. Teams that developed mutual trust were more likely to share innovative ideas and engage in constructive critique (Sonnenwald, 2007). Communication breakdowns, on the other hand, led to duplication of effort and design inconsistencies. Regular coordination meetings and the use of BIM platforms were cited as effective communication enablers.

5.3 Integration of Technology and Human Collaboration

The findings reveal that digital tools such as BIM and virtual design environments significantly enhanced collaborative

processes. However, participants cautioned that technology alone could not ensure collaboration; leadership must cultivate a culture of openness and learning (Azhar, 2011). The most successful projects combined advanced digital coordination with relational leadership that encouraged feedback and reflection.

5.4 Managing Disciplinary Boundaries

Leadership involved negotiating boundaries—technical, linguistic, and cultural. Engineers and architects often approached problems differently; effective leaders translated disciplinary jargon into common project language. This role of “boundary spanner” was critical in maintaining project coherence (Tushman & Scanlan, 1981).

5.5 Organisational Culture and Shared Vision

Collaborative success correlated strongly with organisational culture. Firms that valued teamwork, continuous learning, and shared responsibility exhibited more resilient collaboration. Leadership actions—such as acknowledging contributions, celebrating milestones, and facilitating informal interactions—were essential in nurturing this culture (Schein, 2010).

6. Discussion

The findings of this research illuminate the intricate and symbiotic relationship between leadership and collaboration in multidisciplinary architectural projects. Leadership in such settings cannot be

understood through traditional notions of authority or command; instead, it must be conceptualised as a distributed and facilitative process that enables knowledge integration, creative problem-solving, and collective learning (Spillane, 2006; Northouse, 2022). The results reinforce prior studies that have argued for leadership as an emergent social practice—one that is shared among team members and evolves dynamically as projects progress (Emmitt, 2010; Maher et al., 2018).

6.1 Leadership as a Distributed and Adaptive Process

In multidisciplinary projects, leadership is not monopolised by a single figure, such as the project architect, but is distributed across multiple actors who possess complementary expertise. The data from interviews revealed that successful collaboration occurs when leadership is understood as a fluid function—shifting between individuals depending on the phase of design or the nature of the decision required. This finding aligns with the theoretical notion of distributed leadership, wherein leadership capacity is embedded within the interactions of team members rather than residing solely in one hierarchical position (Spillane, 2006).

Adaptive leadership becomes particularly important in complex architectural contexts that demand flexibility and responsiveness to changing client requirements, environmental standards, and technological advancements (Heifetz, 1994). For instance, structural engineers may take the lead during technical problem-solving, while architects may lead in conceptual phases that require creative

synthesis. This fluid exchange of leadership roles reflects the interplay between transformational and situational leadership behaviours, where leaders adjust their approach based on context and team dynamics (Bass, 1999; Northouse, 2022).

Moreover, effective leaders were found to exhibit emotional intelligence, empathy, and self-awareness—qualities that enhance interpersonal relationships and foster trust (Goleman, 1998). Emotional intelligence enables leaders to navigate disciplinary tensions and cultivate an environment in which individuals feel valued and heard. These soft skills are crucial for transforming potential conflicts into opportunities for creative synergy, echoing findings by Giritli and Topçu-Oraz (2013), who identified empathy and communication as core dimensions of leadership in design-intensive organisations.

6.2 The Role of Trust and Psychological Safety in Collaboration

The study's findings highlight trust as the bedrock of multidisciplinary collaboration. Trust not only facilitates open communication but also enables the risk-taking necessary for innovation (Sonnenwald, 2007). When team members perceive that their contributions are respected and that mistakes are treated as learning opportunities, collaboration thrives. This resonates with Schein's (2010) argument that psychological safety is a prerequisite for organisational learning and innovation.

Leaders play a pivotal role in constructing this sense of safety. By demonstrating

transparency, consistency, and fairness, leaders cultivate trust among team members from diverse professional backgrounds. The ability to balance assertiveness with openness encourages the sharing of divergent perspectives—a critical requirement in design projects where creativity emerges through the reconciliation of conflicting ideas (Cross, 2011).

Trust also extends beyond interpersonal relationships to institutional trust, which involves faith in organisational processes and communication systems. Effective multidisciplinary teams establish clear decision-making protocols, transparent information-sharing systems, and feedback loops. These structural mechanisms reinforce the reliability of collaborative processes and minimise misunderstandings (Emmitt & Gorse, 2003).

6.3 Communication and Boundary-Spanning Leadership

Effective communication emerged as a recurring theme that bridges leadership and collaboration. In multidisciplinary design, communication is not merely the transfer of information but an act of translation and negotiation across disciplinary languages (Cuff, 1991; Dossick & Neff, 2010). Leaders act as boundary spanners—individuals who mediate between professions, interpret technical or creative content, and ensure coherence in decision-making (Tushman & Scanlan, 1981).

The use of digital technologies such as Building Information Modelling (BIM) and collaborative software tools has transformed how these interactions occur. BIM platforms

allow real-time coordination among architects, engineers, and contractors, enabling visual problem-solving and reducing design conflicts (Azhar, 2011). However, the study's participants cautioned that technology alone cannot guarantee collaboration. Without leadership that promotes open dialogue and shared understanding, digital tools may reinforce silos rather than dissolve them (Dossick & Neff, 2011). Thus, technology acts as an enabler, while leadership ensures that technological integration aligns with human and organisational goals—a dynamic explained effectively by socio-technical systems theory (Trist & Bamforth, 1951).

Furthermore, leaders' communication style directly influences collaborative efficiency. Transformational leaders tend to adopt dialogic communication, encouraging feedback and shared ownership of ideas (Bass, 1999). Such dialogic practices generate a culture of reflection and continuous improvement, aligning with Schön's (1983) concept of the “reflective practitioner” in design-based professions.

6.4 Leadership, Culture, and Organisational Learning

A major finding concerns the role of organisational culture in mediating the relationship between leadership and collaboration. Culture shapes how individuals interpret leadership actions and how teams engage in collective work (Schein, 2010). Organisations that encourage open communication, experimentation, and mutual respect are more likely to foster cross-disciplinary collaboration (Sebastian, 2011).

Leadership is instrumental in cultivating and maintaining this culture. The data revealed that leaders who celebrate small wins, acknowledge diverse contributions, and promote informal interactions help build a sense of community within teams. This, in turn, enhances motivation and shared purpose—key components of transformational leadership (Bass, 1999).

Furthermore, organisational culture supports learning-oriented collaboration. The most successful multidisciplinary teams functioned as “communities of practice” (Wenger, 1998), where knowledge was not merely exchanged but co-created through dialogue and reflection. Leaders who value learning promote iterative feedback and post-project reviews, allowing teams to institutionalise lessons learned. This emphasis on reflection and adaptive learning mirrors theories of double-loop learning in organisations (Argyris & Schön, 1978), where teams challenge underlying assumptions and improve future performance.

6.5 Integration of Theoretical Perspectives

The findings validate and extend the integrative theoretical framework developed for this study, which combines Transformational Leadership Theory, Distributed Cognition Theory, and Socio-Technical Systems Theory.

From the perspective of Transformational Leadership Theory, leaders in architectural design act as visionaries who inspire teams through purpose, creativity, and empowerment (Bass, 1999). Yet, the study

shows that this vision is most effective when it is co-created with the team rather than imposed from above. Such a co-created vision transforms followers into collaborators—aligning with modern understandings of leadership as shared influence rather than control (Northouse, 2022).

Distributed Cognition Theory (Hutchins, 1995) helps explain how teams collectively process information and generate solutions. The findings show that architectural projects are cognitive systems wherein knowledge is distributed across individuals, tools, and representations (e.g., drawings, BIM models). Leadership, in this context, involves orchestrating these distributed cognitive processes—facilitating dialogue between human and technological agents to maintain shared situational awareness.

Socio-Technical Systems Theory (Trist & Bamforth, 1951) complements this view by framing architectural collaboration as the interaction between social relationships and technological infrastructure. The findings confirm that optimal collaboration emerges when both social and technical subsystems are aligned. Leaders who understand this interdependence manage not only human dynamics but also technological workflows and data-sharing architectures (Azhar, 2011).

Together, these frameworks highlight that leadership in multidisciplinary architecture is systemic, emergent, and relational, extending beyond individual traits to encompass organisational structures and technologies.

6.6 Implications for Practice

The study's findings have significant implications for practice. First, architectural firms must reconceptualise leadership development to include interpersonal and facilitative skills alongside technical competence. Leadership programs should emphasise empathy, negotiation, and communication as essential capabilities.

Second, firms should design collaborative infrastructures—both technological and organisational—that support distributed leadership. This includes establishing cross-disciplinary coordination roles, transparent decision-making protocols, and shared digital platforms.

Third, professional accreditation bodies and universities should integrate leadership and teamwork competencies into architectural education. The future of architecture depends on professionals who can bridge disciplinary divides, manage complexity, and lead collaboratively toward sustainable design solutions (Emmitt, 2010; Sebastian, 2011).

7. Conclusion and Recommendations

7.1 Conclusion

This study concludes that leadership and collaboration are interdependent pillars underpinning the success of multidisciplinary architectural projects. Leadership in this context is distributed, adaptive, and relational, emphasising influence over authority and integration over control. Effective leaders act as facilitators who orchestrate collaboration, manage

boundaries, and cultivate trust among diverse professionals (Spillane, 2006; Northouse, 2022).

Collaboration, meanwhile, emerges as a socially constructed process where diverse knowledge systems converge to create innovative design solutions. The findings affirm that technological tools like BIM enhance this process only when embedded within a culture of openness and guided by visionary, empathetic leadership (Azhar, 2011; Schein, 2010).

The study's theoretical contribution lies in its integrated model that connects transformational leadership, distributed cognition, and socio-technical systems theories. This model positions leadership as the dynamic force that synchronises human creativity, collective learning, and technological collaboration in the architectural design process.

7.2 Recommendations

Based on the findings, the study recommends the following actions:

Integrate Leadership Training in Architectural Education: Universities and professional institutions should include courses on emotional intelligence, negotiation, and interdisciplinary teamwork to prepare future architects for leadership in collaborative environments.

Develop Organisational Structures for Shared Leadership: Firms should promote decentralised decision-making and empower team members across disciplines to assume leadership roles when appropriate.

Foster Trust and Psychological Safety: Project leaders should intentionally create inclusive spaces where all participants feel safe to express ideas, challenge assumptions, and learn from failure.

Align Technology with Human Collaboration: The adoption of BIM and digital tools should be coupled with leadership strategies that ensure shared understanding and effective information exchange.

Institutionalise Learning and Reflection: Organizations should implement regular project reviews and knowledge-sharing sessions to translate experience into institutional learning.

Future research could extend this inquiry through comparative studies across cultural contexts or by employing mixed-methods approaches to quantitatively assess the relationship between leadership behaviours and project performance outcomes.

References

Argyris, C., & Schön, D. A. (1978). *Organisational learning: A theory of action perspective*. Addison-Wesley.

Azhar, S. (2011). Building Information Modelling (BIM): Trends, benefits, risks, and challenges for the AEC industry. *Leadership and Management in Engineering*, 11(3), 241–252.

Bachman, L. (2003). *Integrated buildings: The systems basis of architecture*. Wiley.

Bass, B. M. (1999). Two decades of research and development in transformational leadership. *European Journal of Work and Organisational Psychology*, 8(1), 9–32.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research in Psychology*, 3(2), 77–101.

Creswell, J. W., & Poth, C. N. (2018). *Qualitative inquiry and research design: Choosing among five approaches* (4th ed.). Sage.

Cross, N. (2011). *Design thinking: Understanding how designers think and work*. Berg.

Cuff, D. (1991). *Architecture: The story of practice*. MIT Press.

Dossick, C. S., & Neff, G. (2010). Organisational divisions in BIM-enabled commercial construction. *Journal of Construction Engineering and Management*, 136(4), 459–467.

Dossick, C. S., & Neff, G. (2011). Messy talk and clean technology: Communication, problem-solving, and collaboration using Building Information Modelling. *Engineering Project Organisation Journal*, 1(2), 83–93.

Emmitt, S. (2010). *Design management for architects*. Wiley-Blackwell.

Emmitt, S., & Gorse, C. A. (2003). *Construction communication*. Blackwell.

Giritli, H., & Topçu-Oraz, G. (2013). The interplay of leadership styles and organisational culture in the construction industry. *International Journal of Project Management*, 31(2), 228–238.

Goleman, D. (1998). *Working with emotional intelligence*. Bantam Books.

Grey, B. (1989). *Collaborating: Finding common ground for multiparty problems*. Jossey-Bass.

Heifetz, R. A. (1994). *Leadership without easy answers*. Harvard University Press.

Hutchins, E. (1995). *Cognition in the wild*. MIT Press.

Kirk, S., & Sellen, A. (2014). *Designing together: The collaboration and conflict of the creative process*. Princeton Architectural Press.

Koolhaas, R. (1995). S, M, L, XL. Monacelli Press.

Kvan, T. (2000). Collaborative design: What is it? *Automation in Construction*, 9(4), 409–415.

Maher, M. L., Paulini, M., & Murty, P. (2018). Scaling up: From individual design to collaborative design research. *Design Studies*, 56, 84–110.

Mattessich, P., & Monsey, B. (1992). *Collaboration: What makes it work*. Amherst H. Wilder Foundation.

Mumford, M. D., Zaccaro, S. J., Harding, F. D., Fleishman, E. A., & Reiter-Palmon, R. (2002). Leadership skills for a changing world. *Leadership Quarterly*, 13(2), 143–170.

Northouse, P. G. (2022). *Leadership: Theory and practice* (9th ed.). Sage.

Schein, E. H. (2010). *Organisational culture and leadership* (4th ed.). Jossey-Bass.

Schön, D. A. (1983). *The reflective practitioner: How professionals think in action*. Basic Books.

Sebastian, R. (2011). Changing roles of architects in the building process. *Open House International*, 36(4), 47–54.

Sonnenwald, D. H. (2007). Scientific collaboration. *Annual Review of Information Science and Technology*, 41(1), 643–681.

Spillane, J. P. (2006). *Distributed leadership*. Jossey-Bass.

Trist, E. L., & Bamforth, K. W. (1951). Some social and psychological consequences of the longwall method of coal-getting. *Human Relations*, 4(1), 3–38.

Tushman, M. L., & Scanlan, T. J. (1981). Boundary spanning individuals. *Academy of Management Journal*, 24(2), 289–305.

Wenger, E. (1998). *Communities of practice: Learning, meaning, and identity*. Cambridge University Press.